pyhs3.base.Evaluable¶
- class pyhs3.base.Evaluable(**data)[source]¶
Base class for HS3 distributions and functions with automatic parameter preprocessing.
This class provides automatic parameter processing that eliminates the need for manual @model_validator methods in subclasses. It automatically converts field values into parameter names and generates constants for numeric values.
The class automatically processes all field annotations during initialization:
String fields (
str
) → Direct parameter mappingNumeric fields (
float
,int
) → Generate unique constant namesUnion fields (
str | float
,int | str
, etc.) → Runtime type detectionList fields (
list[str]
,list[str | float]
) → Indexed parameter mappingBoolean fields (
bool
) → Automatically excluded from processingExcluded fields → Fields marked with
json_schema_extra={"preprocess": False}
Examples
Basic usage with string and numeric parameters:
from typing import Literal class MyDistribution(Evaluable): type: Literal["gaussian"] = "gaussian" mean: str | float # Can be parameter name or numeric value sigma: str | float # With parameter references dist1 = MyDistribution(name="gauss1", mean="mu_param", sigma="sigma_param") print(dist1.parameters) # {'mu_param', 'sigma_param'} print(dist1.constants) # {} # With numeric values - constants are generated automatically dist2 = MyDistribution(name="gauss2", mean=1.5, sigma=0.5) print(dist2.parameters) # {'constant_gauss2_mean', 'constant_gauss2_sigma'} print(list(dist2.constants.keys())) # ['constant_gauss2_mean', 'constant_gauss2_sigma']
List parameter processing:
class ProductFunction(Evaluable): type: Literal["product"] = "product" factors: list[str | float] # Mixed list of names and values func = ProductFunction(name="prod", factors=["param1", 2.0, "param2", 1.5]) print(sorted(func.parameters)) # ['constant_prod_factors[1]', 'constant_prod_factors[3]', 'param1', 'param2'] # Reconstruct parameter list in context context = { "param1": "tensor1", "constant_prod_factors[1]": "tensor2", "param2": "tensor3", "constant_prod_factors[3]": "tensor4" } func.get_parameter_list(context, "factors") # ['tensor1', 'tensor2', 'tensor3', 'tensor4']
Excluding fields from preprocessing:
from pydantic import Field class ConfigurableDistribution(Evaluable): type: Literal["configurable"] = "configurable" param: str | float # Will be processed enabled: bool # Automatically excluded config_val: float = Field( # Explicitly excluded default=1.0, json_schema_extra={"preprocess": False} ) dist = ConfigurableDistribution(name="test", param="alpha", enabled=True, config_val=2.0) print(dist.parameters) # {'alpha'} - Only param is processed
Note
If you need custom parameter processing, set
_parameters
manually before the auto-processing runs, or provide a custom@model_validator
.Unsupported field types raise
RuntimeError
with helpful guidance about usingjson_schema_extra={"preprocess": False}
for non-parameter fields.- Parameters:
data (
Any
)
- __init__(**data)¶
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data (
Any
)
Methods
__init__
(**data)Create a new model by parsing and validating input data from keyword arguments.
construct
([_fields_set])copy
(*[, include, exclude, update, deep])Returns a copy of the model.
dict
(*[, include, exclude, by_alias, ...])expression
(_)Base expression method - should be overridden by subclasses.
from_orm
(obj)get_parameter_list
(context, param_key)Reconstruct a parameter list from flattened indexed keys.
json
(*[, include, exclude, by_alias, ...])model_construct
([_fields_set])Creates a new instance of the Model class with validated data.
model_copy
(*[, update, deep])!!! abstract "Usage Documentation"
model_dump
(*[, mode, include, exclude, ...])!!! abstract "Usage Documentation"
model_dump_json
(*[, indent, include, ...])!!! abstract "Usage Documentation"
model_json_schema
([by_alias, ref_template, ...])Generates a JSON schema for a model class.
model_parametrized_name
(params)Compute the class name for parametrizations of generic classes.
model_post_init
(context, /)This function is meant to behave like a BaseModel method to initialise private attributes.
model_rebuild
(*[, force, raise_errors, ...])Try to rebuild the pydantic-core schema for the model.
model_validate
(obj, *[, strict, ...])Validate a pydantic model instance.
model_validate_json
(json_data, *[, strict, ...])!!! abstract "Usage Documentation"
model_validate_strings
(obj, *[, strict, ...])Validate the given object with string data against the Pydantic model.
parse_file
(path, *[, content_type, ...])parse_obj
(obj)parse_raw
(b, *[, content_type, encoding, ...])process_parameter
(param_key)Process a single parameter that can be either a string reference or numeric value.
process_parameter_list
(param_key)Process a list parameter containing mixed string references and numeric values.
schema
([by_alias, ref_template])schema_json
(*[, by_alias, ref_template])update_forward_refs
(**localns)validate
(value)Attributes
Dictionary of PyTensor constants generated from numeric field values.
model_computed_fields
model_config
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
model_extra
Get extra fields set during validation.
model_fields
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Set of parameter names this component depends on.