pyhs3.distributions.AsymmetricCrystalBallDist

class pyhs3.distributions.AsymmetricCrystalBallDist(**data)[source]

Crystal Ball distribution implementation.

Implements the generalized asymmetrical double-sided Crystal Ball line shape as defined in ROOT’s RooCrystalBall.

The probability density function is defined as:

\[\begin{split}f(m; m_0, \sigma_L, \sigma_R, \alpha_L, \alpha_R, n_L, n_R) = \begin{cases} A_L \cdot \left(B_L - \frac{m - m_0}{\sigma_L}\right)^{-n_L}, & \text{for } \frac{m - m_0}{\sigma_L} < -\alpha_L \\ \exp\left(-\frac{1}{2} \cdot \left[\frac{m - m_0}{\sigma_L}\right]^2\right), & \text{for } \frac{m - m_0}{\sigma_L} \leq 0 \\ \exp\left(-\frac{1}{2} \cdot \left[\frac{m - m_0}{\sigma_R}\right]^2\right), & \text{for } \frac{m - m_0}{\sigma_R} \leq \alpha_R \\ A_R \cdot \left(B_R + \frac{m - m_0}{\sigma_R}\right)^{-n_R}, & \text{otherwise} \end{cases}\end{split}\]

where:

\[\begin{split}\begin{align} A_i &= \left(\frac{n_i}{\alpha_i}\right)^{n_i} \cdot \exp\left(-\frac{\alpha_i^2}{2}\right) \\ B_i &= \frac{n_i}{\alpha_i} - \alpha_i \end{align}\end{split}\]
Parameters:
  • m – Observable variable

  • m0 – Peak position (mean)

  • sigma_L – Left-side width parameter (must be > 0)

  • sigma_R – Right-side width parameter (must be > 0)

  • alpha_L – Left-side transition point (must be > 0)

  • alpha_R – Right-side transition point (must be > 0)

  • n_L – Left-side power law exponent (must be > 0)

  • n_R – Right-side power law exponent (must be > 0)

Note

All parameters except m and m0 must be positive. The distribution reduces to a single-sided Crystal Ball when one of the alpha parameters is set to zero.

Parameters:

data (Any)

__init__(**data)

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Parameters:

data (Any)

Methods

__init__(**data)

Create a new model by parsing and validating input data from keyword arguments.

construct([_fields_set])

copy(*[, include, exclude, update, deep])

Returns a copy of the model.

dict(*[, include, exclude, by_alias, ...])

expression(context)

Evaluate the Crystal Ball distribution.

from_orm(obj)

get_parameter_list(context, param_key)

Reconstruct a parameter list from flattened indexed keys.

json(*[, include, exclude, by_alias, ...])

model_construct([_fields_set])

Creates a new instance of the Model class with validated data.

model_copy(*[, update, deep])

!!! abstract "Usage Documentation"

model_dump(*[, mode, include, exclude, ...])

!!! abstract "Usage Documentation"

model_dump_json(*[, indent, include, ...])

!!! abstract "Usage Documentation"

model_json_schema([by_alias, ref_template, ...])

Generates a JSON schema for a model class.

model_parametrized_name(params)

Compute the class name for parametrizations of generic classes.

model_post_init(context, /)

This function is meant to behave like a BaseModel method to initialise private attributes.

model_rebuild(*[, force, raise_errors, ...])

Try to rebuild the pydantic-core schema for the model.

model_validate(obj, *[, strict, ...])

Validate a pydantic model instance.

model_validate_json(json_data, *[, strict, ...])

!!! abstract "Usage Documentation"

model_validate_strings(obj, *[, strict, ...])

Validate the given object with string data against the Pydantic model.

parse_file(path, *[, content_type, ...])

parse_obj(obj)

parse_raw(b, *[, content_type, encoding, ...])

process_parameter(param_key)

Process a single parameter that can be either a string reference or numeric value.

process_parameter_list(param_key)

Process a list parameter containing mixed string references and numeric values.

schema([by_alias, ref_template])

schema_json(*[, by_alias, ref_template])

update_forward_refs(**localns)

validate(value)

Attributes

constants

Dictionary of PyTensor constants generated from numeric field values.

model_computed_fields

model_config

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

model_extra

Get extra fields set during validation.

model_fields

model_fields_set

Returns the set of fields that have been explicitly set on this model instance.

parameters

Set of parameter names this component depends on.

type

alpha_L

alpha_R

m

m0

n_L

n_R

sigma_R

sigma_L

name