pyhs3.distributions.AsymmetricCrystalBallDist¶
- class pyhs3.distributions.AsymmetricCrystalBallDist(**data)[source]¶
Crystal Ball distribution implementation.
Implements the generalized asymmetrical double-sided Crystal Ball line shape as defined in ROOT’s RooCrystalBall.
The probability density function is defined as:
\[\begin{split}f(m; m_0, \sigma_L, \sigma_R, \alpha_L, \alpha_R, n_L, n_R) = \begin{cases} A_L \cdot \left(B_L - \frac{m - m_0}{\sigma_L}\right)^{-n_L}, & \text{for } \frac{m - m_0}{\sigma_L} < -\alpha_L \\ \exp\left(-\frac{1}{2} \cdot \left[\frac{m - m_0}{\sigma_L}\right]^2\right), & \text{for } \frac{m - m_0}{\sigma_L} \leq 0 \\ \exp\left(-\frac{1}{2} \cdot \left[\frac{m - m_0}{\sigma_R}\right]^2\right), & \text{for } \frac{m - m_0}{\sigma_R} \leq \alpha_R \\ A_R \cdot \left(B_R + \frac{m - m_0}{\sigma_R}\right)^{-n_R}, & \text{otherwise} \end{cases}\end{split}\]where:
\[\begin{split}\begin{align} A_i &= \left(\frac{n_i}{\alpha_i}\right)^{n_i} \cdot \exp\left(-\frac{\alpha_i^2}{2}\right) \\ B_i &= \frac{n_i}{\alpha_i} - \alpha_i \end{align}\end{split}\]- Parameters:
m – Observable variable
m0 – Peak position (mean)
sigma_L – Left-side width parameter (must be > 0)
sigma_R – Right-side width parameter (must be > 0)
alpha_L – Left-side transition point (must be > 0)
alpha_R – Right-side transition point (must be > 0)
n_L – Left-side power law exponent (must be > 0)
n_R – Right-side power law exponent (must be > 0)
Note
All parameters except m and m0 must be positive. The distribution reduces to a single-sided Crystal Ball when one of the alpha parameters is set to zero.
- Parameters:
data (
Any
)
- __init__(**data)¶
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data (
Any
)
Methods
__init__
(**data)Create a new model by parsing and validating input data from keyword arguments.
construct
([_fields_set])copy
(*[, include, exclude, update, deep])Returns a copy of the model.
dict
(*[, include, exclude, by_alias, ...])expression
(context)Evaluate the Crystal Ball distribution.
from_orm
(obj)get_parameter_list
(context, param_key)Reconstruct a parameter list from flattened indexed keys.
json
(*[, include, exclude, by_alias, ...])model_construct
([_fields_set])Creates a new instance of the Model class with validated data.
model_copy
(*[, update, deep])!!! abstract "Usage Documentation"
model_dump
(*[, mode, include, exclude, ...])!!! abstract "Usage Documentation"
model_dump_json
(*[, indent, include, ...])!!! abstract "Usage Documentation"
model_json_schema
([by_alias, ref_template, ...])Generates a JSON schema for a model class.
model_parametrized_name
(params)Compute the class name for parametrizations of generic classes.
model_post_init
(context, /)This function is meant to behave like a BaseModel method to initialise private attributes.
model_rebuild
(*[, force, raise_errors, ...])Try to rebuild the pydantic-core schema for the model.
model_validate
(obj, *[, strict, ...])Validate a pydantic model instance.
model_validate_json
(json_data, *[, strict, ...])!!! abstract "Usage Documentation"
model_validate_strings
(obj, *[, strict, ...])Validate the given object with string data against the Pydantic model.
parse_file
(path, *[, content_type, ...])parse_obj
(obj)parse_raw
(b, *[, content_type, encoding, ...])process_parameter
(param_key)Process a single parameter that can be either a string reference or numeric value.
process_parameter_list
(param_key)Process a list parameter containing mixed string references and numeric values.
schema
([by_alias, ref_template])schema_json
(*[, by_alias, ref_template])update_forward_refs
(**localns)validate
(value)Attributes
constants
Dictionary of PyTensor constants generated from numeric field values.
model_computed_fields
model_config
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
model_extra
Get extra fields set during validation.
model_fields
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
parameters
Set of parameter names this component depends on.
type
alpha_L
alpha_R
m
m0
n_L
n_R
sigma_R
sigma_L
name