pyhs3.functions.ProcessNormalizationFunction¶
- class pyhs3.functions.ProcessNormalizationFunction(**data)[source]¶
Process normalization function with systematic variations.
Implements the CMS Combine ProcessNormalization class which computes a normalization factor based on systematic variations. This matches the actual CMS Combine implementation and JSON structure from combine files.
- Mathematical formulation:
result = nominalValue * exp(symShift + asymShift) * otherFactors
where: - symShift = sum(logKappa[i] * theta[i]) for symmetric variations - asymShift = sum(_asym_interpolation(theta[i], kappa_sum[i], kappa_diff[i]))
for asymmetric variations with kappa_sum = logKappaHi + logKappaLo and kappa_diff = logKappaHi - logKappaLo
otherFactors = product of all additional multiplicative terms
- Parameters:
name – Name of the function
nominalValue – Baseline normalization value (default 1.0)
thetaList – Names of symmetric variation nuisance parameters
logKappa – Log-kappa values for symmetric variations (optional, defaults to empty)
asymmThetaList – Names of asymmetric variation nuisance parameters
logAsymmKappa – List of [logKappaLo, logKappaHi] pairs for asymmetric variations (optional)
otherFactorList – Names of additional multiplicative factors
data (
Any)
- __init__(**data)¶
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data (
Any)
Methods
__init__(**data)Create a new model by parsing and validating input data from keyword arguments.
construct([_fields_set])copy(*[, include, exclude, update, deep])Returns a copy of the model.
dict(*[, include, exclude, by_alias, ...])expression(context)Evaluate and return a named PyTensor expression.
from_orm(obj)get_parameter_list(context, param_key)Reconstruct a parameter list from flattened indexed keys.
json(*[, include, exclude, by_alias, ...])model_construct([_fields_set])Creates a new instance of the Model class with validated data.
model_copy(*[, update, deep])!!! abstract "Usage Documentation"
model_dump(*[, mode, include, exclude, ...])!!! abstract "Usage Documentation"
model_dump_json(*[, indent, ensure_ascii, ...])!!! abstract "Usage Documentation"
model_json_schema([by_alias, ref_template, ...])Generates a JSON schema for a model class.
model_parametrized_name(params)Compute the class name for parametrizations of generic classes.
model_post_init(context, /)This function is meant to behave like a BaseModel method to initialise private attributes.
model_rebuild(*[, force, raise_errors, ...])Try to rebuild the pydantic-core schema for the model.
model_validate(obj, *[, strict, extra, ...])Validate a pydantic model instance.
model_validate_json(json_data, *[, strict, ...])!!! abstract "Usage Documentation"
model_validate_strings(obj, *[, strict, ...])Validate the given object with string data against the Pydantic model.
parse_file(path, *[, content_type, ...])parse_obj(obj)parse_raw(b, *[, content_type, encoding, ...])process_parameter(param_key)Process a single parameter that can be either a string reference or numeric value.
process_parameter_list(param_key)Process a list parameter containing mixed string references and numeric values.
schema([by_alias, ref_template])schema_json(*[, by_alias, ref_template])update_forward_refs(**localns)validate(value)Attributes
constantsDictionary of PyTensor constants generated from numeric field values.
model_computed_fieldsmodel_configConfiguration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
model_extraGet extra fields set during validation.
model_fieldsmodel_fields_setReturns the set of fields that have been explicitly set on this model instance.
parametersSet of parameter names this component depends on.
typenominalValuethetaListlogKappaasymmThetaListlogAsymmKappaotherFactorListname