pyhs3.distributions.MixtureDist

class pyhs3.distributions.MixtureDist(**data)[source]

Mixture of probability distributions.

Implements a weighted combination of multiple distributions:

\[f(x) = \sum_{i=1}^{n-1} c_i \cdot f_i(x) + (1 - \sum_{i=1}^{n-1} c_i) \cdot f_n(x)\]

The last component is automatically normalized to ensure the coefficients sum to 1.

Parameters:
  • coefficients (list[str]) – Names of coefficient parameters.

  • summands (list[str]) – Names of component distributions.

  • extended (bool) – Whether the mixture is extended (affects normalization).

  • data (Any)

__init__(**data)

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Parameters:

data (Any)

Methods

__init__(**data)

Create a new model by parsing and validating input data from keyword arguments.

construct([_fields_set])

copy(*[, include, exclude, update, deep])

Returns a copy of the model.

dict(*[, include, exclude, by_alias, ...])

expression(context)

Builds a symbolic expression for the mixture distribution.

from_orm(obj)

get_parameter_list(context, param_key)

Reconstruct a parameter list from flattened indexed keys.

json(*[, include, exclude, by_alias, ...])

model_construct([_fields_set])

Creates a new instance of the Model class with validated data.

model_copy(*[, update, deep])

!!! abstract "Usage Documentation"

model_dump(*[, mode, include, exclude, ...])

!!! abstract "Usage Documentation"

model_dump_json(*[, indent, include, ...])

!!! abstract "Usage Documentation"

model_json_schema([by_alias, ref_template, ...])

Generates a JSON schema for a model class.

model_parametrized_name(params)

Compute the class name for parametrizations of generic classes.

model_post_init(context, /)

This function is meant to behave like a BaseModel method to initialise private attributes.

model_rebuild(*[, force, raise_errors, ...])

Try to rebuild the pydantic-core schema for the model.

model_validate(obj, *[, strict, ...])

Validate a pydantic model instance.

model_validate_json(json_data, *[, strict, ...])

!!! abstract "Usage Documentation"

model_validate_strings(obj, *[, strict, ...])

Validate the given object with string data against the Pydantic model.

parse_file(path, *[, content_type, ...])

parse_obj(obj)

parse_raw(b, *[, content_type, encoding, ...])

process_parameter(param_key)

Process a single parameter that can be either a string reference or numeric value.

process_parameter_list(param_key)

Process a list parameter containing mixed string references and numeric values.

schema([by_alias, ref_template])

schema_json(*[, by_alias, ref_template])

update_forward_refs(**localns)

validate(value)

Attributes

constants

Dictionary of PyTensor constants generated from numeric field values.

model_computed_fields

model_config

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

model_extra

Get extra fields set during validation.

model_fields

model_fields_set

Returns the set of fields that have been explicitly set on this model instance.

parameters

Set of parameter names this component depends on.

type

summands

coefficients

extended

name