pyhs3.distributions.GGZZBackgroundDist

class pyhs3.distributions.GGZZBackgroundDist(**data)[source]

CMS ggZZ background distribution.

Implements CMS’s ggZZ background model used in Higgs to ZZ analyses. This distribution models the continuum background from gluon-gluon to ZZ production.

\[f(m_{4\ell}; a_1, a_2, a_3) = a_1 \cdot m_{4\ell}^{a_2} \cdot \exp(-a_3 \cdot m_{4\ell})\]
Parameters:
  • m4l (str) – Four-lepton invariant mass variable.

  • a1 (str) – Normalization parameter.

  • a2 (str) – Power law exponent.

  • a3 (str) – Exponential decay parameter.

Note

This is specific to CMS’s ggZZ background modeling in H->ZZ->4l analyses.

Parameters:

data (Any)

__init__(**data)

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Parameters:

data (Any)

Methods

__init__(**data)

Create a new model by parsing and validating input data from keyword arguments.

construct([_fields_set])

copy(*[, include, exclude, update, deep])

Returns a copy of the model.

dict(*[, include, exclude, by_alias, ...])

expression(context)

Builds a symbolic expression for the ggZZ background PDF.

from_orm(obj)

get_parameter_list(context, param_key)

Reconstruct a parameter list from flattened indexed keys.

json(*[, include, exclude, by_alias, ...])

model_construct([_fields_set])

Creates a new instance of the Model class with validated data.

model_copy(*[, update, deep])

!!! abstract "Usage Documentation"

model_dump(*[, mode, include, exclude, ...])

!!! abstract "Usage Documentation"

model_dump_json(*[, indent, include, ...])

!!! abstract "Usage Documentation"

model_json_schema([by_alias, ref_template, ...])

Generates a JSON schema for a model class.

model_parametrized_name(params)

Compute the class name for parametrizations of generic classes.

model_post_init(context, /)

This function is meant to behave like a BaseModel method to initialise private attributes.

model_rebuild(*[, force, raise_errors, ...])

Try to rebuild the pydantic-core schema for the model.

model_validate(obj, *[, strict, ...])

Validate a pydantic model instance.

model_validate_json(json_data, *[, strict, ...])

!!! abstract "Usage Documentation"

model_validate_strings(obj, *[, strict, ...])

Validate the given object with string data against the Pydantic model.

parse_file(path, *[, content_type, ...])

parse_obj(obj)

parse_raw(b, *[, content_type, encoding, ...])

process_parameter(param_key)

Process a single parameter that can be either a string reference or numeric value.

process_parameter_list(param_key)

Process a list parameter containing mixed string references and numeric values.

schema([by_alias, ref_template])

schema_json(*[, by_alias, ref_template])

update_forward_refs(**localns)

validate(value)

Attributes

constants

Dictionary of PyTensor constants generated from numeric field values.

model_computed_fields

model_config

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

model_extra

Get extra fields set during validation.

model_fields

model_fields_set

Returns the set of fields that have been explicitly set on this model instance.

parameters

Set of parameter names this component depends on.

type

m4l

a1

a2

a3

name