pyhs3.distributions.PolynomialDist¶
- class pyhs3.distributions.PolynomialDist(**data)[source]¶
Polynomial probability distribution.
Implements a polynomial probability density function as defined in ROOT’s RooPolynomial and the HS3 specification:
\[f(x; a_0, a_1, a_2, ...) = \frac{1}{\mathcal{M}} \sum_{i=0}^n a_i x^i = a_0 + a_1 x + a_2 x^2 + ...\]- Parameters:
Note
The degree of the polynomial is determined by the length of the coefficients array. ROOT uses a lowestOrder parameter to handle default coefficients, but for simplicity we require all coefficients to be explicitly specified.
- ROOT Reference:
- Parameters:
data (
Any)
- __init__(**data)¶
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data (
Any)
Methods
__init__(**data)Create a new model by parsing and validating input data from keyword arguments.
construct([_fields_set])copy(*[, include, exclude, update, deep])Returns a copy of the model.
dict(*[, include, exclude, by_alias, ...])expression(context)Evaluate and return a named PyTensor expression.
extended_likelihood(_context[, _data])Extended likelihood contribution in normal space.
from_orm(obj)get_parameter_list(context, param_key)Reconstruct a parameter list from flattened indexed keys.
json(*[, include, exclude, by_alias, ...])likelihood(context)Builds a symbolic expression for the polynomial PDF.
log_expression(context)Log-probability combining main likelihood with extended terms.
model_construct([_fields_set])Creates a new instance of the Model class with validated data.
model_copy(*[, update, deep])!!! abstract "Usage Documentation"
model_dump(*[, mode, include, exclude, ...])!!! abstract "Usage Documentation"
model_dump_json(*[, indent, ensure_ascii, ...])!!! abstract "Usage Documentation"
model_json_schema([by_alias, ref_template, ...])Generates a JSON schema for a model class.
model_parametrized_name(params)Compute the class name for parametrizations of generic classes.
model_post_init(context, /)This function is meant to behave like a BaseModel method to initialise private attributes.
model_rebuild(*[, force, raise_errors, ...])Try to rebuild the pydantic-core schema for the model.
model_validate(obj, *[, strict, extra, ...])Validate a pydantic model instance.
model_validate_json(json_data, *[, strict, ...])!!! abstract "Usage Documentation"
model_validate_strings(obj, *[, strict, ...])Validate the given object with string data against the Pydantic model.
parse_file(path, *[, content_type, ...])parse_obj(obj)parse_raw(b, *[, content_type, encoding, ...])process_parameter(param_key)Process a single parameter that can be either a string reference or numeric value.
process_parameter_list(param_key)Process a list parameter containing mixed string references and numeric values.
schema([by_alias, ref_template])schema_json(*[, by_alias, ref_template])update_forward_refs(**localns)validate(value)Attributes
constantsDictionary of PyTensor constants generated from numeric field values.
model_computed_fieldsmodel_configConfiguration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
model_extraGet extra fields set during validation.
model_fieldsmodel_fields_setReturns the set of fields that have been explicitly set on this model instance.
parametersSet of parameter names this component depends on.
typexcoefficientsname