pyhs3.functions.InterpolationFunction¶
- class pyhs3.functions.InterpolationFunction(**data)[source]¶
Piecewise interpolation function implementation.
Implements ROOT’s PiecewiseInterpolation logic to morph between nominal and variation distributions based on nuisance parameter values. Supports multiple interpolation codes (0-6) for different mathematical approaches.
HS3 Reference
Note: Interpolation functions are not explicitly defined in the current HS3 specification.
- Mathematical Formulations:
For additive interpolation modes (codes 0, 2, 3, 4):
\[\text{result} = \text{nominal} + \sum_i I_i(\theta_i; \text{low}_i, \text{nominal}, \text{high}_i)\]For multiplicative interpolation modes (codes 1, 5, 6):
\[\text{result} = \text{nominal} \times \prod_i [1 + I_i(\theta_i; \text{low}_i/\text{nominal}, 1, \text{high}_i/\text{nominal})]\]
- Parameters:
name – Name of the function
high – High variation parameter names
low – Low variation parameter names
nom – Nominal parameter name
interpolationCodes – Interpolation method codes (0-6)
positiveDefinite – Whether function should be positive definite
vars – Variable names this function depends on (nuisance parameters)
data (
Any)
- __init__(**data)¶
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data (
Any)
Methods
__init__(**data)Create a new model by parsing and validating input data from keyword arguments.
construct([_fields_set])copy(*[, include, exclude, update, deep])Returns a copy of the model.
dict(*[, include, exclude, by_alias, ...])expression(context)Evaluate and return a named PyTensor expression.
from_orm(obj)get_parameter_list(context, param_key)Reconstruct a parameter list from flattened indexed keys.
json(*[, include, exclude, by_alias, ...])model_construct([_fields_set])Creates a new instance of the Model class with validated data.
model_copy(*[, update, deep])!!! abstract "Usage Documentation"
model_dump(*[, mode, include, exclude, ...])!!! abstract "Usage Documentation"
model_dump_json(*[, indent, ensure_ascii, ...])!!! abstract "Usage Documentation"
model_json_schema([by_alias, ref_template, ...])Generates a JSON schema for a model class.
model_parametrized_name(params)Compute the class name for parametrizations of generic classes.
model_post_init(context, /)This function is meant to behave like a BaseModel method to initialise private attributes.
model_rebuild(*[, force, raise_errors, ...])Try to rebuild the pydantic-core schema for the model.
model_validate(obj, *[, strict, extra, ...])Validate a pydantic model instance.
model_validate_json(json_data, *[, strict, ...])!!! abstract "Usage Documentation"
model_validate_strings(obj, *[, strict, ...])Validate the given object with string data against the Pydantic model.
parse_file(path, *[, content_type, ...])parse_obj(obj)parse_raw(b, *[, content_type, encoding, ...])process_parameter(param_key)Process a single parameter that can be either a string reference or numeric value.
process_parameter_list(param_key)Process a list parameter containing mixed string references and numeric values.
schema([by_alias, ref_template])schema_json(*[, by_alias, ref_template])update_forward_refs(**localns)validate(value)Attributes
constantsDictionary of PyTensor constants generated from numeric field values.
model_computed_fieldsmodel_configConfiguration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
model_extraGet extra fields set during validation.
model_fieldsmodel_fields_setReturns the set of fields that have been explicitly set on this model instance.
parametersSet of parameter names this component depends on.
typehighlownominterpolationCodespositiveDefinitevarsname