pyhs3.distributions.GenericDist¶
- class pyhs3.distributions.GenericDist(**data)[source]¶
Generic distribution implementation.
Evaluates custom mathematical expressions using SymPy parsing and PyTensor computation graphs.
- Parameters:
name – Name of the distribution
expression – Mathematical expression string to be evaluated
- Supported Functions:
Basic arithmetic: +, -, , /, *
Trigonometric: sin, cos, tan
Exponential/Logarithmic: exp, log
Other: sqrt, abs
Examples
Create a quadratic distribution:
>>> dist = GenericDist(name="quadratic", expression="x**2 + 2*x + 1")
Create a custom exponential with oscillation:
>>> dist = GenericDist(name="exp_cos", expression="exp(-x**2/2) * cos(y)")
Create a complex mathematical function:
>>> dist = GenericDist(name="complex", expression="sin(x) + log(abs(y) + 1)")
- Parameters:
data (
Any
)
- __init__(**data)¶
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data (
Any
)
Methods
__init__
(**data)Create a new model by parsing and validating input data from keyword arguments.
construct
([_fields_set])copy
(*[, include, exclude, update, deep])Returns a copy of the model.
dict
(*[, include, exclude, by_alias, ...])expression
(context)Evaluate the generic distribution using expression parsing.
from_orm
(obj)get_parameter_list
(context, param_key)Reconstruct a parameter list from flattened indexed keys.
json
(*[, include, exclude, by_alias, ...])model_construct
([_fields_set])Creates a new instance of the Model class with validated data.
model_copy
(*[, update, deep])!!! abstract "Usage Documentation"
model_dump
(*[, mode, include, exclude, ...])!!! abstract "Usage Documentation"
model_dump_json
(*[, indent, include, ...])!!! abstract "Usage Documentation"
model_json_schema
([by_alias, ref_template, ...])Generates a JSON schema for a model class.
model_parametrized_name
(params)Compute the class name for parametrizations of generic classes.
model_post_init
(context, /)This function is meant to behave like a BaseModel method to initialise private attributes.
model_rebuild
(*[, force, raise_errors, ...])Try to rebuild the pydantic-core schema for the model.
model_validate
(obj, *[, strict, ...])Validate a pydantic model instance.
model_validate_json
(json_data, *[, strict, ...])!!! abstract "Usage Documentation"
model_validate_strings
(obj, *[, strict, ...])Validate the given object with string data against the Pydantic model.
parse_file
(path, *[, content_type, ...])parse_obj
(obj)parse_raw
(b, *[, content_type, encoding, ...])process_parameter
(param_key)Process a single parameter that can be either a string reference or numeric value.
process_parameter_list
(param_key)Process a list parameter containing mixed string references and numeric values.
schema
([by_alias, ref_template])schema_json
(*[, by_alias, ref_template])setup_expression
()Parse and analyze the expression during initialization.
update_forward_refs
(**localns)validate
(value)Attributes
constants
Dictionary of PyTensor constants generated from numeric field values.
model_computed_fields
model_config
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
model_extra
Get extra fields set during validation.
model_fields
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
parameters
Set of parameter names this component depends on.
type
expression_str
name