pyhs3.distributions.CrystalBallDist

class pyhs3.distributions.CrystalBallDist(**data)[source]

Single-sided Crystal Ball distribution implementation.

Implements the ROOT RooCrystalBall lineshape with a single power-law tail. This is the standard Crystal Ball distribution with shared parameters for both sides of the Gaussian core, but only one tail (usually on the left).

Mathematical Form:

\[\begin{split}f(m; m_0, \sigma, \alpha, n) = \begin{cases} A \cdot \left(B - \frac{m - m_0}{\sigma}\right)^{-n}, & \text{for } \frac{m - m_0}{\sigma} < -\alpha \\ \exp\left(-\frac{1}{2} \cdot \left[\frac{m - m_0}{\sigma}\right]^2\right), & \text{otherwise} \end{cases}\end{split}\]

where:

\[\begin{split}\begin{align} A &= \left(\frac{n}{\alpha}\right)^{n} \cdot \exp\left(-\frac{\alpha^2}{2}\right) \\ B &= \frac{n}{\alpha} - \alpha \end{align}\end{split}\]
Parameters:
  • m – Observable variable

  • m0 – Peak position (mean)

  • sigma – Width parameter (must be > 0)

  • alpha – Transition point (must be > 0)

  • n – Power law exponent (must be > 0)

Note

All parameters except m and m0 must be positive. This is the standard single-sided Crystal Ball used widely in high-energy physics.

Parameters:

data (Any)

__init__(**data)

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Parameters:

data (Any)

Methods

__init__(**data)

Create a new model by parsing and validating input data from keyword arguments.

construct([_fields_set])

copy(*[, include, exclude, update, deep])

Returns a copy of the model.

dict(*[, include, exclude, by_alias, ...])

expression(context)

Evaluate the single-sided Crystal Ball distribution.

from_orm(obj)

get_parameter_list(context, param_key)

Reconstruct a parameter list from flattened indexed keys.

json(*[, include, exclude, by_alias, ...])

model_construct([_fields_set])

Creates a new instance of the Model class with validated data.

model_copy(*[, update, deep])

!!! abstract "Usage Documentation"

model_dump(*[, mode, include, exclude, ...])

!!! abstract "Usage Documentation"

model_dump_json(*[, indent, include, ...])

!!! abstract "Usage Documentation"

model_json_schema([by_alias, ref_template, ...])

Generates a JSON schema for a model class.

model_parametrized_name(params)

Compute the class name for parametrizations of generic classes.

model_post_init(context, /)

This function is meant to behave like a BaseModel method to initialise private attributes.

model_rebuild(*[, force, raise_errors, ...])

Try to rebuild the pydantic-core schema for the model.

model_validate(obj, *[, strict, ...])

Validate a pydantic model instance.

model_validate_json(json_data, *[, strict, ...])

!!! abstract "Usage Documentation"

model_validate_strings(obj, *[, strict, ...])

Validate the given object with string data against the Pydantic model.

parse_file(path, *[, content_type, ...])

parse_obj(obj)

parse_raw(b, *[, content_type, encoding, ...])

process_parameter(param_key)

Process a single parameter that can be either a string reference or numeric value.

process_parameter_list(param_key)

Process a list parameter containing mixed string references and numeric values.

schema([by_alias, ref_template])

schema_json(*[, by_alias, ref_template])

update_forward_refs(**localns)

validate(value)

Attributes

constants

Dictionary of PyTensor constants generated from numeric field values.

model_computed_fields

model_config

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

model_extra

Get extra fields set during validation.

model_fields

model_fields_set

Returns the set of fields that have been explicitly set on this model instance.

parameters

Set of parameter names this component depends on.

type

alpha

m

m0

n

sigma

name